
Exploring Just-in-Time
Compilation in Relational
Database Engines

Contents
1. Introduction – What is query compilation, JIT, and MLIR, and why would you want them?

2. Background – What existing technologies are there?

3. Benchmarks – Where is the technology up to now?

4. Proposal – Where to from here and areas to explore.

Contents
1. Introduction – What is query compilation, JIT, and MLIR, and why would you want them?

2. Background – What existing technologies are there?

3. Benchmarks – Where is the technology up to now?

4. Proposal – Where to from here and areas to explore.

Importance of databases
1. Relational databases are used by almost every company – finance, technology,

manufacturing, and healthcare are some industries.

2. It’s widely accepted that in most contexts, the database is the bottleneck of the entire
system. Some of these systems handle trillions of queries a day.*

3. Meaning, even small changes can save billions of dollars of electricity in data centres.

4. According to the 2024 Stack Overflow developer survey, the most popular database is
PostgreSQL with 51.9% of developers using it extensively in the last year.**

*Designing Data-Intensive Applications: Book by Martin Kleppmann

**https://survey.stackoverflow.co/2024/technology#most-popular-technologies-database-prof

1. Introduction

https://survey.stackoverflow.co/2024/technology#most-popular-technologies-database-prof

Databasing Query Execution

1. Introduction

1. As a reminder, these are
generally the steps that a
database takes to run a
query

2. Most of the execution
time usually sits inside
the DB Engine

Iterator model
1. Most popular database structure

internally.

2. Also known as a Volcano model.

3. Works by having a main loop that calls
next() on an iterator which calls the child.

4. For instance, Select would call next() on its
child there and filter the result. It will only
return the result if it satisfies its filter to
the parent.

5. Isn’t very effective at using caches because
it only handles one tuple at a time.

1. Introduction

Vector Model
1. Issue is the iterator model barely uses the

caches on CPUs, so people introduced the
vector model

2. Instead of individual tuples on each next()
function, they work on batches.

3. This reduces overhead of repeated
function calls.

4. Mostly used in column-wise databases.

5. Has less flexibility and needs more RAM.

6. The big downside is that since it isn’t
pipelined anymore, it introduces a lot of
copy operations for data.

1. Introduction

Issue with both models
1. Most databases consider all CPU operations

to be O(1) time complexity – instant.

2. This is because accessing secondary memory
is significantly slower than main memory.

3. Instead, we valued simplifying
implementation complexity by opting for
these models.

4. However, with in-memory databases some of
them opted for compiling their queries with
JIT.

5. The other thing to consider is databases are
so heavily used that improving Postgres by
fractions of percentages would save
tremendous amounts of money.

Latencies on the right: https://colin-
scott.github.io/personal_website/research/intera
ctive_latency.html

1. Introduction

https://colin-scott.github.io/personal_website/research/interactive_latency.html
https://colin-scott.github.io/personal_website/research/interactive_latency.html
https://colin-scott.github.io/personal_website/research/interactive_latency.html

What is Just-In-Time compilation (JIT)?

1. Interpreted languages (Python, JVM languages, C#) can be very slow.

2. Many get around this by using JIT, which triggers after a section of code has run a certain number
of times.

3. When triggered, it compiles a chunk of code into machine code during execution of the program.

4. This includes all the generic compiler optimisations – branch prediction, cache locality, loop
unrolling, method inlining.

5. There are situations where JVM code that has been optimised can be faster than C++ code
because JIT has metrics about how the code runs. It’s very effective and impactful.

#5 https://stackoverflow.com/questions/4516778/when-is-java-faster-than-c-or-when-is-jit-faster-
then-precompiled

1. Introduction

https://stackoverflow.com/questions/4516778/when-is-java-faster-than-c-or-when-is-jit-faster-then-precompiled
https://stackoverflow.com/questions/4516778/when-is-java-faster-than-c-or-when-is-jit-faster-then-precompiled

How impactful is JIT?
1. The x axis is time, y axis is

performance

2. Yellow is the first round of
interpreted execution,
green is a profiling round
and blue is after
optimisations

3. Azul (high performance java
platform) quotes that JIT
can lead up to a 50% more
performance than ahead of
time compilation.

From
https://www.azul.com/blog/jit-
performance-ahead-of-time-
versus-just-in-time/

1. Introduction

https://www.azul.com/blog/jit-performance-ahead-of-time-versus-just-in-time/
https://www.azul.com/blog/jit-performance-ahead-of-time-versus-just-in-time/
https://www.azul.com/blog/jit-performance-ahead-of-time-versus-just-in-time/

What other options are there than JIT?
1. There are some languages that simply don’t do JIT, like Python.

2. Others do give you the ability to do ahead of time compilation (AOT), like C#.
1. This is a popular choice in UI development because there’s a reasonable chance the code paths will

never be triggered enough for JIT, but still important enough for requiring optimization.

3. Hybrid compilation.
1. In some languages, (Java), there is support to do ahead of time compilation on specific segments of

code while leaving others as interpreted to be optimised with JIT later.

1. Introduction

What tools support JIT?
1. Due to the difficulty of implementing JIT itself, most applications of it use some pre-existing

tooling.

2. It’s generally accepted that the most developed JIT is in the JVM due to its age.

3. LLVM is another library that supports JIT, with Julia being a major user.

4. Some languages do still make their own JIT, like PyPy or WASM (WebAssembly).

5. OMR JitBuilder is made by Eclipse and JVM uses parts of it.

6. MLIR can also be used to turn into LLVM then use the LLVM JIT compiler, and other JIT
compilers can use it.

1. Introduction

What is MLIR?
1. MLIR supports building compilers by providing common infrastructure.

2. Most compilers end up rewriting common parts every time, so MLIR lowers the cost
significantly.

3. The MLIR (the output of the code you write) is like a JSON representation of the operations
you defined in C++.

4. Each entry represents operations, whereas typically compilers function in terms of
instructions.

5. It can do rounds of “lowering” which enables just in time compilation.

6. We can dive into some short examples of MLIR.

1. Introduction

Example of MLIR code
1. On the right is a TableGen

syntax which can generate a
C++ class.

2. This is one essential part of the
tools that makes MLIR powerful
– the ability to define operators
without the repetitive C++.

Sample from
https://llvm.org/devmtg/2020-
09/slides/MLIR_Tutorial.pdf

1. Introduction

https://llvm.org/devmtg/2020-09/slides/MLIR_Tutorial.pdf
https://llvm.org/devmtg/2020-09/slides/MLIR_Tutorial.pdf

How MLIR works
1. MLIR allows you to create

custom dialects by doing
“lowerings”.

2. The author would write the
parser, then write the lowering
to ToyIR, but from there MLIR
provides the support for
common lowerings.

Image from
https://llvm.org/devmtg/2020-
09/slides/MLIR_Tutorial.pdf

1. Introduction

https://llvm.org/devmtg/2020-09/slides/MLIR_Tutorial.pdf
https://llvm.org/devmtg/2020-09/slides/MLIR_Tutorial.pdf

Contents
1. Introduction – What is query compilation, JIT, and MLIR, and why would you want them?

2. Background – What existing technologies are there?

3. Benchmarks – Where is the technology up to now?

4. Proposal – Where to from here and areas to explore.

What are the different types of JIT
choices in databases

1. Most applications of JIT in databases can be split into having JIT in Query Plan Execution
(QPE) and Expression (EXP).

2. QPE-optimised databases are when you use JIT on the entire query plan.

3. At this stage, QPE mostly exists in research databases or in-memory databases.

4. EXP is when specific operators are compiled, like age > 30.

5. Only some databases have EXP jit-support, with the flagship one being PostgreSQL.

6. PostgreSQL also supports tuple deforming, which is transforming on-disk tuples into in-
memory representations.

2. Background

LLVM based JIT compilers in databases
1. HyPer

1. The pioneer in the space. However, it’s hard to test them because they’re commercial.

2. Umbra
1. Umbra is a close relative of HyPer that mostly followed the same implementation model for JIT.

3. LingoDB
1. Uses MLIR and focuses on being a concise implementation of their idea.

4. Apache Impala
1. One of the more established JIT databases, and brags a5x improvement due to JIT. It still lacks common

features like nested schemas and indexes.

5. PostgreSQL
1. Very established and strong support, but it only compiles expressions, and tuple transforms so it doesn’t

fully use JIT.

2. Background

JVM based JIT compilers in databases
Most of these are JIT-enabled more as a side effect of JVM rather than by choice, but their
success shows that JIT is a viable approach

1. Apache Derby – a lightweight relational database purely created in Java.

2. Neo4J – The world’s leading Graph Database.

3. PrestoDB – Created by Facebook, it specialises in data analytics.

4. Apache Spark – Large scale datasets database that’s heavily used in data science.

I’m not going to dig too deeply into any of these here.

2. Background

Other JIT databases
1. Mutable - Quite a promising and well-known JIT-supported research database. It compiles to

WebAssembly so it’s also a unique JIT.

2. QuestDB – a time series database which uses “asmjit” for producing machine code.

3. RaptorDB – a key-value store for JSON documents which uses the .NET runtime framework.

4. BlazingSQL – A GPU-accelerated database that supports JIT through CUDA.

2. Background

Case: HyPer
1. HyPer is an in-memory database developed

by Technical University of Munich and was
acquired by Tableau which is now part of
Salesforce.

2. They are considered the pioneer in adding
JIT to databasing. They were so early to this
because they are an in-memory database,
and it gave them large performance
benefits.

3. In their first attempt they were converting
their relational algebra in C++ then
compiling it, but the compiler would take
too long.

2. Background

Case: HyPer
1. Instead, they decided to write all the

simple operations in LLVM directly,
and tie pre-compiled C++ modules
together through LLVM.

2. This dramatically dropped their
compile times and improved their
cache usage.

3. It is proprietary though, so
benchmarking it is challenging.

4. In later iterations, they introduce
adaptive execution which compiles
the code while the interpreter is
running

https://www.vldb.org/pvldb/vol4/p539-
neumann.pdf

2. Background

https://www.vldb.org/pvldb/vol4/p539-neumann.pdf
https://www.vldb.org/pvldb/vol4/p539-neumann.pdf

Case: Mutable’s use of JIT
1. Mutable is a research-oriented database made for fast

prototyping by Saarland University and was initially developed to
support their idea for JIT.

2. Their innovation was using WebAssembly.

3. Previous solutions used LLVM, which isn’t fundamentally made
with JIT in mind, and then they add more engineering effort to
support compiling while executing which they think adds too
much complexity.

4. They argue that you can get better performance by picking a
compiler that is built with JIT in mind

2. Background

Case: Mutable’s use of JIT

2. Background

1. Hyper and Umbra
both manually
implemented large
chunks of their
compilers manually

2. Mutable does a
purer form where
they simply rely on
web assembly’s
compiler

Case: Lingo-DB’s use of JIT
1. Lingo DB takes a different approach and uses MLIR

2. Reminder that MLIR supports custom lowerings that let you
change the intermediary representation in stages

3. Instead of having their system parse the query into
relational algebra, and the optimising this custom view,
they do it with built in lowering infrastructure inside MLIR

4. Effectively, this turns their entire pipeline into a compiler

5. They argue the primary benefit of this is simplifying the
development of the database

2. Background

Case: Lingo-DB’s use of JIT

2. Background

1. They get solid
benchmarks
out of this, but
also, their
entire codebase
is much smaller
than other
existing ones

Case: Postgres’s use of JIT
1. Postgres introduced JIT in version 12 with support for query expressions and tuple deforming by using LLVM

2. Most of the user experiences that I found complained about it being unbeneficial, with it triggering very large
costs

3. When it released, the UK coronavirus dashboard got a 70% failure rate on a critical service, reporting their
queries becoming 2,229x slower

4. There’s a hackernews user here that did ad-hoc benchmarks and found that it does manage to make their
database faster on average, but it also makes a significant number of queries slower even after tuning it for
an entire day

5. So why did they add it?

*2 https://blog.g-vo.org/taming-the-postgres-jit.html

*3 https://dev.to/xenatisch/cascade-of-doom-jit-and-how-a-postgres-update-led-to-70-failure-on-a-critical-
national-service-3f2a

*4 https://news.ycombinator.com/item?id=26223092

2. Background

https://blog.g-vo.org/taming-the-postgres-jit.html
https://dev.to/xenatisch/cascade-of-doom-jit-and-how-a-postgres-update-led-to-70-failure-on-a-critical-national-service-3f2a
https://dev.to/xenatisch/cascade-of-doom-jit-and-how-a-postgres-update-led-to-70-failure-on-a-critical-national-service-3f2a
https://news.ycombinator.com/item?id=26223092

Case: Postgres’s use of JIT
1. At this stage of researching JIT, you begin wandering outside of well-backed research articles.

2. Digging through why they chose to introduce this, Andres Freund suggested adding JIT back
in 2016 https://www.postgresql.org/message-
id/flat/20161206034955.bh33paeralxbtluv%40alap3.anarazel.de

3. He primarily suggested adding it to postgres for complex, cpu intensive queries as well as
noticing tuple deforming is very slow and was met with significant discussion.

4. The discussions here are mostly about whether LLVM is the correct choice because it’s a
large dependency to add.

5. The big counter to most arguments were “it’s an optional feature, and someone’s already
done most of the work, so it shouldn’t hurt to add right?”.

2. Background

https://www.postgresql.org/message-id/flat/20161206034955.bh33paeralxbtluv%40alap3.anarazel.de
https://www.postgresql.org/message-id/flat/20161206034955.bh33paeralxbtluv%40alap3.anarazel.de

Case: Postgres’s use of JIT

1. The interesting thing is Peter Eisentraut asked about how they arrived at their defaults, and
this was never answered

2. The point of this is, it doesn’t seem the defaults around this feature were particularly deeply
researched, and that also means there’s room for more JIT research in postgres

3. Since this was intended for very complex queries, it’s unlikely that TPC-H would represent
this benefit accurately

2. Background

Challenges faced when adding JIT
1. Complexity of the approach – HyPer’s approach is quite solid, however, improving it became

very complicated because they were writing raw LLVM.

2. Requiring rewriting the entire database – Lingo DB’s approach is quite viable, but creating a
whole database around this idea probably is daunting. PostgreSQL is around 2.5 million lines
of code nowadays.

3. If integrating into a new database, not researching defaults enough – PostgreSQL caused
global problems with their JIT patch.

4. If it is overhauling query expressions, maintaining ACID compliance is a new challenge.

2. Background

The big missing thing
1. Most of these approaches complain about JIT compile latency.

2. However, why can’t we simply cache the JIT compile objects? Most systems that use a
database would be sending similar queries repeatedly, and in a realistic environment this
would offer major benefits.

3. I heard this idea from https://news.ycombinator.com/item?id=39742916

4. A commenter mentions that actually, LLVM already has support for caching previously
compiled objects, however, the way that PostgreSQL works simply doesn’t support this due
to direct memory addresses.

5. It does seem that most TPC-H benchmarks only run the query once, and that really focuses
on the initial compile time.

2. Background

https://news.ycombinator.com/item?id=39742916

Contents
1. Introduction – What is query compilation, JIT, and MLIR, and why would you want them?

2. Background – What existing technologies are there?

3. Benchmarks – Where is the technology up to now?

4. Proposal – Where to from here and areas to explore

Current state based on papers
1. We can broadly see from the pictures we saw earlier that each paper effectively claims they

are the fastest

2. The answer is it really depends between them, and some of them argue that their approach
is significantly simpler

3. Let’s try to benchmark these on our own

3. Benchmarks

Benchmarking method
1. Keep in mind that most databasing teams allocate a significant amount of time for

benchmarking, so this isn’t as easy as press install and run.

2. Most databases look at TPC H as the main set of queries to benchmark, but even then,
methods for how to do this varies.

3. I spent a significant amount of time trying to get other tools to work for me (DBT3,
HammerDB, sysbench), and realised that I want to run this on multiple systems. My local
small server as well as the research server (tods1).

4. Most of these common tools also only implement benchmarks for common databases, and
they are particularly painful to extend because they focus on turning it into a continuous
benchmarking system.

5. It can take in the range of hours to do all the preparation to run things though.

3. Benchmarks

Benchmarking method
1. Due to wanting to run this on multiple environments, wanting my results to be reproducible,

and that I’m only comparing my results to itself, Docker was chosen.

2. I turned to Mutable, which already had the framework done for several relevant databases –
Mutable, PostgreSQL, DuckDB, and HyPer.

3. This was packed into a Docker container with all the installation steps and build steps, (the
Dockerfile is over 122 lines.

4. Lingo DB was put into its own container and was substantially simpler to do.

5. Peculiarly, despite us using Mutable as the main source for benchmarking, it doesn’t work
inside the benchmarks (yet!)

3. Benchmarks

Outcomes

3. Benchmarks

0

1000

2000

3000

4000

5000

6000

7000

1.sql 3.sql 6.sql 12.sql 14.sql

Execution + compilation/planning times

lingodb PostgeSQL DuckDB HyPer DuckDB 4 CPUs HyPer 4 CPUs

Outcomes

3. Benchmarks

0

50

100

150

200

250

300

1.sql 3.sql 6.sql 12.sql 14.sql

Benchmarks excluding PostgreSQL

lingodb DuckDB HyPer DuckDB 4 CPUs HyPer 4 CPUs

Contents
1. Introduction – What is query compilation, JIT, and MLIR, and why would you want them?

2. Background – What existing technologies are there?

3. Benchmarks – Where is the technology up to now?

4. Proposal – Where to from here and areas to explore

Remaining work for the literature review
1. … write the literature review itself.

2. … fix the Mutable benchmark

3. Understand more databases – Umbra, a JVM one, Ignite or DuckDB for how other in-memory
databases tackle these problems.

4. Benchmark how much time PostgreSQL spends inside the CPU itself. This must be enough for
them to justify exploring JIT in the first place. Another paper on JitBuilder got a consistent
improvements on entire queries

5. Benchmark PostgreSQL with JIT enabled, and maybe other JIT compilers. There’s some
content online about other JIT engines being better.

4. Proposal

Proposed future works by others
1. Putting MLIR into an existing database.

2. Integrate a different compiler (JVM, Wasm) into an existing database.

3. Expand operators on one of these smaller papers.

4. Using novel hardware.

5. Further benchmarking to compare the best way to proceed.

4. Proposal

Where JIT and lowerings fit
JIT would be used here inside the
pipeline, which would be most of
the execution time.

We want to take the relational
algebra operations output,
create MLIR lowerings for this,
and then run the compiled
output inside the DB Engine.

4. Proposal

MLIR into an existing database
1. So, the main target of this thesis at this stage is MLIR with entire query expressions

2. The first stage here is taking RA Ops and parsing it into MLIR

3. Since it’s already quite optimised, there isn’t a need for custom lowerings like how Lingo DB
does

4. Then I need to explore how to execute this instead of the way Postgres handles its DBEngine

5. The big downside here is that most likely this will break ACID compliance inside of
PostgreSQL. At this stage, I’m considering this out of scope entirely

6. With MLIR IR, we should be able to explore other JIT compilers as well – wasm and python
JIT tools are possible

But if there’s any obvious reasons this idea isn’t going to work, there’s a number of other
interesting future work ideas that would work to explore!

4. Proposal

	Slide 1: Exploring Just-in-Time Compilation in Relational Database Engines
	Slide 2: Contents
	Slide 3: Contents
	Slide 4: Importance of databases
	Slide 5: Databasing Query Execution
	Slide 6: Iterator model
	Slide 7: Vector Model
	Slide 8: Issue with both models
	Slide 9: What is Just-In-Time compilation (JIT)?
	Slide 10: How impactful is JIT?
	Slide 11: What other options are there than JIT?
	Slide 12: What tools support JIT?
	Slide 13: What is MLIR?
	Slide 14: Example of MLIR code
	Slide 15: How MLIR works
	Slide 16: Contents
	Slide 17: What are the different types of JIT choices in databases
	Slide 18: LLVM based JIT compilers in databases
	Slide 19: JVM based JIT compilers in databases
	Slide 20: Other JIT databases
	Slide 21: Case: HyPer
	Slide 22: Case: HyPer
	Slide 23: Case: Mutable’s use of JIT
	Slide 24: Case: Mutable’s use of JIT
	Slide 25: Case: Lingo-DB’s use of JIT
	Slide 26: Case: Lingo-DB’s use of JIT
	Slide 27: Case: Postgres’s use of JIT
	Slide 28: Case: Postgres’s use of JIT
	Slide 29: Case: Postgres’s use of JIT
	Slide 30: Challenges faced when adding JIT
	Slide 31: The big missing thing
	Slide 32: Contents
	Slide 33: Current state based on papers
	Slide 34: Benchmarking method
	Slide 35: Benchmarking method
	Slide 36: Outcomes
	Slide 37: Outcomes
	Slide 38: Contents
	Slide 39: Remaining work for the literature review
	Slide 40: Proposed future works by others
	Slide 41: Where JIT and lowerings fit
	Slide 42: MLIR into an existing database

